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N ABSTRACT
- Drainage of the hearth is an important component of a successful

operation of a blast furnace. In order to investigate the influence of
tapping conditions due to the shape of the slag surface, the one-phase flow of
slag during tapping was modeled as a free boundary problem. This problem was
reformulated by using the method of integrated penalty and, then was simulated
by using a finite difference method developed by the author.

The objective of this report is to give a mathematical justification of l
the penalty method formulation, in which the perturbation with respect to the
domain and the asymptotic properties of solutions of the boundary value !

problem for an elliptic equation with penalty terms are used.

AMS (MOS) Subject Classifications: 34E05, 34E99, 35305, 35367, 35R3S

Rey Words: Free boundary problem, Method of integrated penalty,
Asymptotic expansions, Perturbation with respect to domain

Work Unit Number 1 (Applied Analysis)
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SIGNIFICANCE AND EXPLANATION

We can observe many phenomena involving Free Boundaries in various fields

of engineering and applied science, for example, jet problems, transient
multi-fluid flows, the equilibria of plasmas, Stefan problems, free boundary
problems in optimal shape designs and others. Hence there is interest and
need to develop efficient and accurate numerical methods for the solution of
these problemg. Some free boundary problems mentioned above have been
successfully solved by using the penalty method developed by the author and
his colleagues. An important feature of our approach is that the outward
normal derivative of the solution at the free boundary is approximated
efficiently.

The objective of this report is to give the required mathematical
justification for the model problem reformulated by the method of integrated
penalty. Specifically, we prove the convergence of the penalized free
boundary to the original one as the penalizing parameter ¢ tends to zero.
Here the perturbation theory with respect to the domain and the asymptotic
properties of the solutions of a boundary value problem for an elliptic

equation with penalty terms are used. As an application, the unsteady slag

flow in the hearth is considered. s -
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FREE BOUNDARY PROBLEM FOR UNSTEADY SLAG FLOW IN THE HEARTH
Hideo ¥awarada*

1. INTRODUCTION

The hearth drainage is one of the most important factors for successful
blast furnace operation. The slag is considered to be more difficult to drain
than the metal because of its higher viscosity. Wwhen the slag surface reaches
the level of tap hole, the furnace gas starts to blow out. Then tapping
should be stopped. The amount of undrained molten material at the end of
tapping is estimated by the shape of the slag surface. In order to determine
the influence of tapping conditions due to the shape of the slag surface, the
three-dimensional problem of the slag flow during tapping was solved by using
the finite element method by Ichihara and Pukutake [2]. They concluded that
their computation scheme is not efficient in practical use. This
computational instability was resolved by Kawarada and Natori {[11], using the
penalty method developed by themselves [5-7, 10].

The objective of this report is to give mathematical justification of
penalty formulation, i.e., to prove the convergence of the penalized free
boundary to the one of an original problem when we let the penalizing
parameter € tend to zero. In section 2, we review the formulation for two-
dimensional problems of the slag flow. In section 3, we give the penalized
formulation by using the method of integrated penalty. Section 4 is devoted
to the assumptions and the main theorem. 1In section 5, we prepare some
propositions needed to prove the main theorem, in which the perturbation of
the penalized solution with respect to the domain is discussed., Finally, we

give the proof of the main theorem in section 6.

*Department of Applied Physics, University of Tokyo, Tokyo, Japan

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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2, FORMULATION

We consider two~dimensional problem of the slag flow in the hearth, which

is bounded by impermeable boundaries y =0, x =0 and x = a (c.f. Figure

1). One of the vertical boundaries, x = 0, has a tapping hole near the

bottom, which we denote by To.

[ >4

Free boundary
y = ¢(x,t)
' f,(t)
Tapping hole
r >
0 0 a x
Figure 1

We assume that the hearth is packed with coke, through the bed of which i
the slag flows. Then Darcy's law can be applied for the flow of slag: ;
(2.1) vV = -ave '
where V denotes velocity of slag. The potential ¢ is defined as follows:
(2.2) 0-5—-—39-+y

Pg

where p: density of slag,

g: gravitational acceleration,

p: pressure of slag,




Pg: Pressure at reference point,

y: vertical height from a horizontal plane,
d: permeability of slag.
If we substitute V into the equation of continuity:
(2.3) divv=9¢0,
then we have
(2.4) AY = 0 in the slag region QO(t) (¢t e [0,T)) ,
under the condition 4 = constant and T is tapping period. 0¢(t) is
defined as follows:
(2.5) QO(t) = {(x,y)|0 < x < a, 0 <y < ¢(x,t))}
vhere y = ¢(x,t) represents the height of the slag surface, which is a free

boundary. The boundary conditions for the potential ¢ are given:

{2.6) OY = 0 on y=20,
(2.7) ¢x =0 on x =0 and x = a, except on the tapping hole Po R
(2.9) o= Y on y = Q(X,t) .

The drainage rate V . . of a working blast furnace increases as the tap hole

is eroded during tapping:

- t
Voat " Voue X+ 2 2)  0ceem

where vout: average drainage rate,

k: tap hole opening rate,

L: tap hole erosion rate.

]
(2.11) % .aee -0 )‘ sy,
it x'x Yy y=b (x,t) in
— |
- ade 1 4 02 . it + Vv . |
x dn in
y=¢(x,t)




Where n is outward normal to ﬂ¢(t) and Vin is the inflow velocity of

slag at the surface. The initial shape of the free surface is given:
(2.12) $(x,0) = $o (X) (0 < x< a).

In this report, we deal with the case V is independent of t, but

out
dependent of y. Hereafter, we denote the free boundary problem (2.4)-(2.12)
by (P). By using the relation (2.2), (P) is reformulated into the

equations for {p and y = ¢}:

(2.13) Ap=0 in Q) Wgtgm,
(2.14) 3p = =p on =0
. Ay g y ’
(2.15) %5 =0 on x=0 and x = a except on Po .
{2.16) 2p = pgeV on T
x out 0’
(2.17) P = p, on y = ¢(x,t) ,
(2.18) Roa(i+ /4022 .y
2t pg x 9n v=¢ in

(2.19) $(x,0) = OO(X) (0 < x < a) .

For simplicity, we take pg = 1 and Po = 0 and denote the above problem

by (P').




3. AN APPROXIMATION OF (P') BY MEANS OF THE METHOD OF INTEGRATED PENALTY

When we try to solve (P'), the numerical procedure must contain a

routine for solving the potential problem (2.13)-(2.17) for a given free
boundary y = ¢{x,t). After this is done, the outward normal derivative of
the potential on the free boundary can be calculated. And then, by solving
{2.18) and (2.19), the subsequent shape of the free boundary is obtained and
so on. If we apply the method of integrated penalty to solve the potential
problem (2.13)-(2.14), then the outward normal derivative of the potential
function on the free boundary are easily approximated [3, 10]. This is the
reason why we apply the method of integrated penalty to free boundary
problems.

Let B = {(x,y)|0 < x < a, 0 <y<bl and Y(t) (t € R) be the

heaviside function. Then we penalize (P') as follows: Find

{pe and y = ¢e) for Ve >0,

€ €
(3.1) 8p° -1« vty - ¢%tx,0p° =0 in B,
20°
(3.2) 35— =0 on x=0 and x = a, except on Fo ’
3p°
(3.3) - vbut on Po ‘
3p°
(3.4) 3y = =1 on y=10,
€
(3.5) p =0 on y=b.

Obviously, Y(y - Qe(x,t)) (0 ¢ x<a, 0 <t <T) is the characteristic

function of B - & e‘t)' where
¢

Q@ (t) = {(x, )10 ¢ x <a, 0 <y <o(x,t)} .
¢

It is well known that if we let € bhe small enough in (3.1), then pe

€
approximates p in @ e(t) and p 1is nearly equal to zero in B -~ Q e(t)
¢ ¢
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(9]. Therefore the boundary condition (2.17) is approximately satisfied. If
we use the method of the integrated penalty, the equation (2.18) is
approximated by

b
(3.6) -g-%— = -a{1 - :‘—] p (x,man} + v
€

¢

in *

This approximation is based on the following fact; put
€ 1 €, €
(3.7) ro=c Yy -~ ¢ )p
€ b €
(3.8) s =[ r(xmn,t)an .
Y

By an application of Theorems 1.1 and 1.2 in [3], we have

(3.9) 5+ 1+¢i-%§ c ¥ i pew
y=b(x,t) ¥
(3.10) s+ -7 1+ ¢i . %5' * (1 -Y) din D'(B) as € + 0 .
y=¢(x,t)
By using (3.10), we have
b
(3.11) -7 1+ Qi . %ﬁ x se(x,¢e) = % f pe(x,n)dn
Y"¢(x,t) ¢€

in a suitable topology. Substituting (3.11) into (2.18), we have (3.6). Now,

€
se(x,¢€) is called the integrated penalty. Hereafter we denote by (P )

the penalized problem defined above. Finally we should note that there holds

the same discussion about (P) as mentioned above.




4. THE ASSUMPTIONS AND THE MAIN RESULT

4.1. In order to obtain our main result, we need the following assumptions:

Assumption (A)
There exists a unique solution {p and y = ¢(x,t)} of (P') such that

(4.1) pe c3'°m‘(t)) for t e (0,71 and a e (0,1) ,
(4.2) ¢ e c3%0,a) for t e (0,7 and a € (0,1) ,
(4.3) ¢ e c‘(O,T) for x e (0,a) .

¥

Naturally, vbut included in the boundary condition should have regularity

property in order to obtain (4.1).

Assumption (B)

There exists a unique solution {PF and y = os(x.t)} of (Pe) such that

(4.4) pe e c3'°(n e(t)) for t e (0,T] and a e (0,1) ,
¢
r
(4.5) o€ e c3%0,a) for a e (0,1) , |
e _ 1 &
‘ (4.6) ¢ ec (0,T7) for x e (0,a) , i
!
moreover
€
(4.7) 11 §X
c3'°(o,a)

where X 1is independent of E€.
4.2. Then we have the main result.

Theorem. Under the assumptions (A) and (B), let € + 0, then

(4.8) ¢ + ¢ uniformly in (0,a) X (0,T].

TN
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S. PREPARATIONS
In order to prove our main theorem, we have to prepare three
propositions.

5.1. We consider the following penalized problem defined in B: For

Ve > 0,
(5.1) -Ap° + % Y(y - ¢(x))epS =0 in B,

ap®
(5.2) v 0 on x=0 and x = a, except on Po ‘

ap°
(5.3) - vout on Po ’

3cE
(5.4) 3%--1 on y=0,

. ;

{5.5) p =0 on y=b.,

Where y = ¢$(x) is smooth in (0,a) and satisfies

Define

R¢ = {({x,y)]10 < x<a, 0 <y < $(x)} :
and

= {(x,9)I0 < x< a, y=¢(x)} . o

Let p0 be the solution of the problem:
0
(5.7) Ap” = 0 in Q¢ ' .
e’ |
(5.8) - 0 on x=0 and x = a, except on Po ’
2’ |
(5.9) - vbut on Po R i
0 ap’ !
(5.10) p =0 on T and 3-5—--1 on y=0. |

It is well known (9] that




»m.«mww,@w~-~m_~:“‘

(5.11) p° + p’+(1 - ¥) strongly in H'(B) as € + 0 .
Then we have

Proposition 1. let € be small enough and m » 0. Then

0

€ = .9p (*)
(5.12) 1p 'm,r < 0(/e) lan 'm,r '

€ - 3 0 Bgo
(5.13) Ip + /e » Sﬁ“'m,r g 0(e) M- lm'r ’

€. .1 € €

(5.14) |jl par -v/e ¢ p o $0(ENRTT L, L

r

Proof. See Kawarada and Hanada ([4], Chapter 2, p. 4).
5.2. We fix some y = Oo(x), which satisfies (5.6) and is smooth enough and
we denote the problem (5.7)~(5.10) by Pge Then any domain 9¢ which is

diffeomorphic to o Can be defined enough near Q o Such that
¢ ¢

(5.15) = {(x,y)|0 < x<a, 0<y< $(x)}

%
where ¢(x) = ¢°(x) + §6(x) (0 < x < a)

with s¢ ect(o,a) (> 1.

We consider a family of the penalized problem (5.1)-(5.5), in which
Y(y - ¢$(x)) is replaced by Y(y - ¢'(x)) (¢' = ¢ + §¢). Denote the
solution of this problem by Ps'. Then

Proposition 2.

€ e’ €
(5.16) %2—= 1lim LG-:—‘P— exists ,
B P ¥Y +0 ¢
c"(o,a)
) £ a
(5.17) 55— e c(B) (a e (0,1)) .
(*) v} indicates the norm of V in H"(G).

m,G




€
Proof. See Dervieux ((1), Chapter 3, p. 47). Also %E— satisfies the same

€
properties as p does in Proposition 1.

Proposition 3.

€ 0
p__1.F )2

(5.18) - A S O(ﬁ:-)l<n,ey>lm+1‘“'r L e B
ap° L ap® ap’

(5.19) |jl 56 & - /e Sty p S OE e >, X IS

where n is unit outward normal to ﬂ¢,ey = Yy = (0,1), <*,*> implies the

[ ]
inner product in R and lvlm ® T indicates the norm of v in W (rj.
’ ’

€
Proof. p satigfies

(5.20) -8p° + 1 ¥(y - #(x))p° =0 in B .

Differentiating both sides of (5.20) with respect to ¢, we have

€ €
N R | ey 1, e
(5.21) A 36 + Y(y - ¢) 26 c 3y p 0 in B .

[
Put Qe = %ﬁ—, multiply ¢ € H;(B) both sides of (5.21) and integrate in

B. Then we have

(5.22) [f vg°ewy axay + 2 [ vo®v axay - 1 [/ % PV dxdy = 0 .
B B B

By using the relation;

PV axdy = [ ps<n,ey>w ar ,
r

Q"Q’
< I

(5.23) /f
B

we have




3 3°
! v)0S. 0 1 A e, -
(5.24) {I (=8 + - Y)Q"+¥ axdy +![, Gr=-3—-z°pP <n,e )¢ dr = 0

(by Green's formula) where Q: = Qelﬂ and Q;: = Qels-ﬂ « (5.24) implies
¢ ¢

(5.25) qu -0 in R,
€ 1 €
(5.26) -AQ1 +te Q- 0 in B ~ 90 P
(5.27) Q: -Q: on T
€
(5.28) F=-gF- =gt p<me> on T

on n €

(5.29) == =0 on x=0 and x = a, except on l‘o (1 =0,1) ,
(5.30) " T on
(5.31) -a—y-—- 0 on y=0,

(5.32) Q’:-o on y=b.

(5.27) comes from (5.17). 1f we use the method developed in Kawarada and

Hanada ([4]), Chapter 5, p. 15), we are able to obtain (5.18) and (5.19).




6. THE PROOF OF THE MAIN THEOREM

6.1. We reformulate (2.18) into the following penalty formulation by means of

the method of integrated penalty:

b
3 _ 41 -1 € r
(6.1) T a1 . { q {x,n)dn) + v, *ote .
qe is the solution of the problem:
(6.2) -Aqt + % * Y(y - ¢(x,t))°q* = 0 in B

€
and q satisfies the same boundary conditions as pe does on

to justify (6.1), we may show the following inequality:

3B. In order

b
30 Ean s/ 1402 22
'e { qdn+ v 1+ ¢x anlc(P)
VY al [ fart s 2
s¥Wae ¢xlc(0,a) ' Il qar + 3nlC(P)
r
</ 1+ 42 al [ gfarl + 28
= x c(0,a) ¢ N an _1
r H(T)
/ 2 .« 0(ve) 132 .
SV 1000, 0(v/e) la“'ﬂz(r) (by (5.13) and (5.14))

ot/e) 1/ 1 + o2 12B,

x C(o,a). an 2

c(T)
ALGARY S

[T

o, (t e (0,7))

cto,a) ", (2y(£))

If we use the regularity property of the solution of an elliptic boundary

value problem (see Theorem 3.3.1 in [8]), we have

) o v _ 1}

out c"“(ro)

S c(iet

(8,(¢)) c3%0,a)

cs,a




Combining (6.3) and (6.4), we have

b —
(6.5) l% [ Ean+/ 1 s oi - < 0(/E)eciinn 3 ) < 0(/e) .

3 ] a
o an ¢(lr) = >(0,a)

Here we used (4.7) in the assumption (B).

6.2. ¢ satisfies

b
(3.6) %%— = =41 - % [ pix,man) +v
€

¢

m L ]
Substracting (6.1) from (3.6) and putting M° = ¢ = ¢, we have

am® a

€
(6.6) " "¢ (PO = P4 +0tYe)
€ b € b €
where F(¢ ) = f pdn and F(¢) = f q dn . Since there holds
€ ¢

¢

1
F(O%) - F(§) = [ gf (865 + (1 = 8)¢)assu® ,
0

we may eatimate the following Fréchet derivative:

aé €

b €
4aF - ? - €€
(6.7) ey o !e st-dn p V),
]

where *e = soe +4 (1 -8)¢ (se(0,1)). From the assumptions (A) and (B), we

see
(6.8) W, <K fae (0,1 .
c7’'(0,a)
90E
Tet us recall that sf— wag defined in proposition 3 of section 5.
€

6.3. If we put Qe - %f—, then Qe satisfies some properties included in




propositions 2 and 3. Define Pe = Pe(t) = {(x,y)|0 < x<a, y= Oe(x,t)}.

Let us estimate (6.7) for m > 0,

b
1/ ofan -~ pS ¥
€

v

(6.9)

o1+ viz (f

A

g™ (r®)

ofar®y! - v of)

€.l

(rH

(note

LP.Y

/ 2
TR wi 1

W ’

+

Ye

KA

(by (5.18) and (5.19)). Putting

b
1 ofan - pS¥N
€

v

(6.10)
c(r-)

€
< esc(19"s .

C3' (0,a)

2
€ € 1
/e - = <n,ey>pe)l

(r)

/e o |Qe-—l-pe
/ 2

€
0Ce) ¥ 1 + wx ]

m= 1

€

Ve H(re)

2

€
1+ wx . <n,ey> = 1)

ofar®)t - /5 o1 e
u™(r®)

(vf
st

<n,e >i )
w1’

<1 3p
'an' m+d €

si<n,e >1
1,9
m+ € B (r

€ Y W™t

W (r

in the above inequality,

132
) l3nl 2 €

< eccy
B (")

w>"(0,a)

) s ex .

Here we used the same discussions as in 6.1 and note that K is independent

of se€ (0,1).

-14-




6.4. Integrating (6.6) in (0,t), we have

t
[ (%) - rlerrar + 0(/e) et
0

mio

(6.11) M =~

from which

t

€ a dar € -~
(6.12) IM (o, e) 0 ) < ¢ { 'do"_vc'c(o,a) (e T g 4y dT + 0(/E) e
Substituting (6.10) into (6.12), we have
(6.13) (e, e ¢ Ak [t € (e, at + 0(ve)
* *=""c(0,a) = 0 **""c(o,a) ¢
from which
e -
(6.14) i ('.t)lc(o,.) & 0/e) for vtelorT .
"4
Therefore ‘:
e !
(6.15) max M ( 'tHC(o,a) + 0 as € + 0,

te(o0,T)
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ABSTRACT (cont.)

The objective of this report is to give a mathematical justification of
the penalty method formulation, in which the perturbation with respect to the
domain and the asymptotic properties of solutions of the boundary value
problem for an elliptic equation with penalty terms are used.
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